

Fats

- Functions of fats in foods
 - Energy dense foods
 - Taste/flavor
 - Tenderness of meats
 - Flakiness of baked goods
 - Satiety (Feeling of satisfaction after meals)
 - Decreased gastric emptying
 - Transportation of fat-soluble vitamins
 - A, D, E, and K
 - Provides Essential fatty acids
 - Linoleic and alpha-linolenic acid
- Functions of fats in the body
 - Major energy storage
 - Shock absorbers/Insulator
 - Major Component of Cell Membrane
 - Transport of proteins in the blood
 - Precursor/Regulator for bodily processes
 - Fat is used to make substances (hormones) that help regulate many body processes, such as blood pressure and blood clotting
 - Essential fats can be made into eicosanoids
- Essential Fats
 - Linoleic acid (omega-6)
 - Sources: Veggie oils and nuts
 - Used to make eicosanoids for blood clotting and vasoconstriction
 - Alpha-linolenic acid (omega-3)
 - Sources: Walnuts, Soy, Canola oils, and fish oils
 - Used to make eicosanoids to reduce blood clotting and vasoconstriction
- Types of lipids
 - Fatty acids
 - Triacylglycerols/Triglycerides

- **Diglycerides**
- **Monoglycerides**
- **Phospholipids**
- **Sphingolipids**
- **Sterols**
- Fatty acids – basic structure
 - Simple Lipid
 - Straight hydrocarbon chain with a methyl group at one end and a carboxylic acid group at the other
 - Most common fatty acids have 18 carbons
 - Saturated, Monounsaturated or Polyunsaturated
 - Most naturally occurring fatty acids have cis configuration at double bonds
 - # of carbons in a chain
 - Short chain: <6 carbons = fermentation in the colon
 - Medium chain 6-12 carbons
 - Long chain > 12 carbons
 - If double bonds are present
 - Where double bond exists
 - **Fatty acid nomenclature**
 - **18: 2 Delta 9,12**
 - Or 18: 2 n-6
- Triglycerides – basic structure, the major form of fat in food and in the body
 - The major form of fat in foods
 - **The storage form of fat in the body**
 - Structure: Trihydroxy alcohol (glycerol) is attached by ester bonds to 3 fatty acids
- Phospholipids – basic structure, major functions
 - Glycerol backbone
 - 2 fatty acids
 - Phosphatidic acid
 - **In the cell membrane for phospholipid bilayer**
- Sphingolipids – basic structure, function of sphingomyelin

- Looks similar to phospholipids
- Instead of glycerol, they have a **sphingosine backbone**
- Ex.) sphingomyelin and fxn component in cell membrane structure and abundant in myelin sheath
- Myelin Sheath surrounding neurons
- Sterols/steroids – basic structure of cholesterol, cholesterol is precursor for?
 - Four-ring steroid nucleus and at least one hydroxyl group
 - Benzene ring
 - Cholesterol
 - **Most common sterol in humans**
 - Component of cell membrane
 - Precursor for **steroids; sex hormones, bile acids, adrenocortical hormones.**
 - Vitamin D**
 - Bile acids act as detergents in small intestine to emulsify dietary lipids for digestion and absorption
 - Adrenocortical hormones aka cortisol aldosterone
- Recommended intakes
 - **20-35% of calories should come from fat**
 - **Minimize trans fatty acid intake**
 - **Unsaturated fatty acids should be primary source of dietary fat**
- Digestion of fats
 - Where in the GI tract? Mouth = lingual lipase, some digestion in stomach, most in small intestine
 - Triglycerides in Small Intestine
 - Bile helps emulsify (mix) fat and water
 - Purpose of pancreatic lipase and bile
 - **Pancreatic lipase results in the partial hydrolysis of triglycerides**
 - final products: small enough to be absorbed
 - Free fatty acids
 - Glycerol
 - Monoglycerides

- Some Diglycerides
- Digestion of cholesterol esterase
 - Cholesterol esterase = enzyme for cholesterol
 - Cholesterol only comes from animals or our body makes it
 - Cholesterol esters -> free CHOL + fatty acid
- Phospholipids
 - 1 glycerol backbone, 2 fatty acids, Phosphatidic acid
 - Phospholipase
 - Removes fatty acid from phospholipid
 - Phospholipid -> lysophospholipid
- What are **micelles**?
 - Needed to emulsify fat and formed into chylomicrons
 - After digestion, fat products associate with bile salts to form **micelles**
 - **Micelles interact at brush border & lipid contents diffuse into intestinal cells (enterocytes)**
- Fat absorption into intestinal cells
 - Occurs mostly in the duodenum and jejunum of small intestine
 - Absorbs up to 98% efficiency
 - **Excessive fat in the stool is: steatorrhea**
 - Absorbs
 - Glycerol
 - Monoglycerides
 - Fatty acids
 - Monoglycerides & long chain fatty acids are resynthesized into triglycerides
 - Phospholipids are resynthesized
 - 70-80% of cholesterol is esterified (Chol bound to fatty acid)
- What happens to bile in the small intestine after it completes its job as an emulsifier?
 - **95% is reabsorbed in the ileum & reused through the enterohepatic pathway**
 - Only 5% is excreted in the feces
- Absorption of lipids into lymph vessels and blood
 - **Glycerol & short/medium-chain fatty acids are absorbed into the portal vein**

- Where they bind with albumin (protein) and are transported directly to the liver
- Nutrients head off to the liver first
- Lipid Transportation in the Blood
 - Know parts of a lipoprotein: protein, chol, triglycerides, phospholipids
 - Lipoproteins are transport vehicles for lipids and they act as emulsifiers (fat droplets)
 - Protein
 - Cholesterol
 - Triglycerides
 - Phospholipids
 - What are apolipoproteins?
 - Specific proteins on ALL lipoproteins
 - Serve as enzyme activators for cell receptors
 - apoA
 - apoB
 - apoC
 - apoD
 - apoE
 - Know the function of apoB100 apolipoprotein
 - LDL Cholesterol
 - 4 lipoproteins
 - Chylomicrons
 - Carry products (mostly TG) from digestion/absorption of lipids
 - Chylomicron remnants are sent to the liver
 - Most TGs in chylomicrons go to muscle & adipose tissue, where they are used for energy or stored
 - VLDL
 - Synthesized in liver
 - Contains TGs, Cholesterol, and Phospholipids
 - TGs are removed from VLDL in muscle and adipose (like chylomicrons)

- LDL

- Synthesized in liver
- Made from VLDL (after removing TGs)
- Contain less TG and more CHOL vs VLDL
- Major transporter of CHOL in the blood
- Predictive of heart disease risk -- atherogenic

- HDL

- Synthesized in liver & intestinal cells
- Transports cholesterol from peripheral tissues to liver (CHOL can be used in bile acid synthesis)
- Compared to LDL, has way more protein
- Bigger than LDL
- Where are they made?
- A major transporter of which fat?
- where are they going?

- Moving lipids from the blood to cells (LPL – where do we find it and its function)

- Lipoprotein lipase (LPL)

- *Enzyme found in endothelial cells lining capillaries*
 - Widely distributed in adipose, heart, and skeletal muscle tissue
 - Functions to hydrolyze (break down) triglycerides in chylomicrons and VLDL (thus removing fats from blood).
 - Estrogen increases the activity of LPL in gluteofemoral adipocytes

- Role of liver and adipose tissue in lipid metabolism

- Liver Synthesizes

- Bile acids
 - Lipoproteins
 - New lipids from non-lipid precursors
 - During fasting, the liver produces ketone bodies and continues to synthesize VLDL & HDL

- Adipose Tissue

- Takes triglycerides & cholesterol from chylomicrons and VLDL
(lipoprotein lipase is required)
 - Stores TG
 - During fasting, lipolysis occurs, releasing fatty acids into blood
(hormone-sensitive lipase required)
- Process of atherosclerosis and how is endothelium injured p.21
 - Atherosclerosis is the hardening of arteries caused by lipid-rich plaques
 - Injury to endothelium
 - Macrophages (immune cells) react
 - Smooth muscle cells of arteries replicate
 - Forms plaques/blood clots
 - Inflammation increases the adherence of macrophages and platelets
 - Engulf LDL Chol
 - Injury to the endothelium can be caused by:
 - Oxidized LDL, saturated fats and trans fats
 - Inflammation
 - Triglycerides and high blood pressure
 - Smoking
 - Glycated proteins
- **Cholesterol** (sources, major component of atherogenic fatty plaques, and how is total blood CHOL measured)
 - CHOL is a major component of atherogenic fatty plaques
 - 2 sources of body cholesterol
 - Diet (animal cholesterol)
 - Liver
 - The latest evidence: dietary chol has little or no impact on serum cholesterol
 - Total Blood Cholesterol = LDL + HDL + VLDL (trace amounts)
 - Want to:
 - Raise HDL (good cholesterol)
 - Lower LDL (bad cholesterol)
 - Ratio of Total CHOL: HDL-CHOL is best predictor of CVD deaths

- Lipoproteins and CVD risk (including how to decrease LDL and increase HDL)
 - To increase HDL
 - Exercise
 - Weight Loss
 - Moderation of Alcohol to 1 drink or less
 - Soy Protein
 - MUFA
 - Estrogen
 - To decrease LDL
 - Estrogen
 - MUFA + PUFA
 - Soluble fiber
 - Soy Protein
 - Weight loss/exercise
 - Dietary sterols/stanols
- Recommended lipid levels in the blood
 - TCHOL = less than 170
 - LDL = <100 mg/dl
 - CHOL = <200 mg/dl
 - HDL = >60 mg/dl
 - Blood TG less than 150 mg/dl
- Saturated fats
 - Solid at room temperature
 - Animal fats contain 40-60% saturated fats
 - Plant oils contain 10-20% saturated fats
 - Increases risk of CVD
- Unsaturated fats
 - Liquid at room temperature
 - Animal fats contain 30-50% monounsaturated
 - Plant oils contain 80-90% unsaturated
 - Decreases risk of CVD

- Benefits of omega 3 fats (n-3 fatty acids)
 - Interfere with platelet aggregation (which is a good thing!)
 - Reduce the release of cytokines
 - Reduce triglyceride concentration
- Trans fatty acids
 - Sources
 - Hydrogenation of unsaturated fats
 - Small amounts found naturally in beef and dairy
 - Characteristics
 - Raises LDL and lowers HDL
 - Behaves like saturated fat
 - Associated with increased inflammation
 - Correlates more strongly with CVD mortality than saturated fatty acids
- Unique lipoproteins which may increase the risk of CVD/atherosclerosis
 - Lipoprotein A [Lp(a)]
 - Genetic variant of LDL
 - Attached to a unique marker protein referred to as apo(a)
 - Associated with atherosclerosis
 - May deliver CHOL to regions of recent injury and for wound healing
 - Apolipoprotein E
 - apoE is a structural component of HDL, VLDL, and chylomicrons
 - ApoE may be involved in atherogenesis
 - 3 isoforms: apoE2, E3, and E4
 - E4 phenotype associated with increased CVD risk
- Lipid pathways
 - Eicosanoids
 - Ketones
 - Lipogenesis of fatty acids
 - Cholesterol synthesis
 - Beta Oxidation of fatty acids
- Eicosanoids

- Compounds made from the essential fats (linoleic and alpha-linolenic acids)
- They have hormone-like properties
- Include:
 - Prostaglandins (PG)
 - Leukotrienes (LT)
 - Thromboxanes (TX)
- Overall effects of making more n-6 derived eicosanoids, overall effects of making more n-3 derived eicosanoids
 - More n-6 and n-3 go on to make eicosanoids
 - Fatty acids make specific eicosanoids
 - Linoleic acid -> **arachidonic acid** -> eicosanoids
 - Proinflammatory
 - Pro-arrhythmia
 - Platelet Activator
 - Vasoconstrictor
 - Linolenic acid -> **eicosapentaenoic acid** -> eicosanoids
 - Anti-inflammatory
 - Anti-arrhythmia
 - Platelet inhibitor
 - Vasodilation
- What are the essential fatty acids and food sources of omega 3 fats and omega 6 fats?
 - Omega-6 sources: corn oil, soybean oil, sunflower oil, nuts and seeds
 - Omega-3 sources: fatty fish, walnuts and flaxseed
- Essential fatty acid deficiency
 - N-6 Deficiency
 - Poor growth
 - Scaly Lesions
 - N-3 Deficiency
 - Neurological Abnormalities
 - Visual Abnormalities
- **Ketones**

- Substances that are made when the body breaks down fat for energy
 - What are they made of: Acetyl CoA
 - When are ketones made: When the body breaks down fat for energy when it lacks carbs
 - What are the three ketone bodies
 - Ketogenesis: Liver converts excess acetyl CoA to ketone body
 - Ketosis: Mild increase in ketone bodies
 - Ketoacidosis: Dangerously high levels of ketone bodies
- Lipogenesis
 - All fatty acids (except for the essential fats) are made from acetyl CoA
 - Except for n-3 and n-6 PUFA's all fats can be synthesized from acetyl CoA
- Sources of Acetyl CoA
 - Pyruvate
 - Carbohydrates
 - Amino Acids
 - Fatty acids
- Facts to know about fatty acid synthesis
 - Remember the Pentose phosphate pathway (hexose monophosphate shunt)
 - Main purposes:
 - Produce ribose-5-P, which is necessary for synthesis of nucleic acids found in DNA and RNA and other nucleotides
 - Produce NADPH (nicotinamide adenine dinucleotide phosphate), which is required for the synthesis of fatty acids
 - Starts with acetyl CoA
 - fatty acids are elongated by adding more acetyl CoA
 - NADPH is required to make fatty acids
- How do we use fatty acids once they are eaten or made?
 - Stored as energy (triglycerides and adipose tissue)
 - Used to make phospholipids (bilayer in every cell)
 - Used to make cholesterol esters (that bond with fatty acids)
 - Used to make eicosanoids

- Cholesterol synthesis
 - Made from acetyl CoA
 - HMG-CoA reductase is the rate-limiting step of cholesterol synthesis and step is irreversible
 - The statin drugs inhibit HMG-CoA reductase = enzyme, thus decreasing CHOL synthesis
 - Statins
 - Atorvastatin (Lipitor)
 - Simvastatin (Zocor)
 - Lovastatin (Mevacor)
 - Pravastatin (Pravachol)
 - Rosuvastatin (Crestor)
- Beta oxidation
 - What is it: Breakdown for energy of fatty acids
 - Where does it occur: within the mitochondria of cells
 - One cycle produces:
 - 1 Acetyl CoA
 - 1 FADH₂ electron carrier
 - 1 NADH electron carrier
 - How many ATPs can we produce from one fat?
 - A 16 Carbon Fatty Acids can produce 129 ATPs
 - 1 glucose molecule produces 36-38 ATPs

Proteins

Introduction to proteins

- They are polymers of amino acids, bound by peptide bonds
- 100 - 10,000 amino acids
- There are 20 amino acids - all with different side chains
- Functions of proteins
 - Structural and Mechanical fxns
 - Contractile Protein in Muscles

- Collagen (skin, cartilage, blood vessels)
- Keratin (hair and nails)
- **Hormones**
 - Messenger molecules
 - Insulin
 - Glucagon
- **Immune functions**
 - Antibodies attack bacteria and viruses
- **Enzymes: catalyze reactions**
 - Ex.)
 - Hydrolase - split compounds
 - Dehydrogenase: remove H⁺
 - Kinase: add phosphate group
 - Ligase (synthase): joins 2 compounds together
- **Transporters (in the blood)**
 - Albumin: vitamins and minerals (B)
 - Transthyretin (prealbumin): retinol, thyroid hormone
 - Transferrin: Fe transport
 - Ceruloplasmin: Copper mineral
 - Lipoproteins: carry fat
- **Fluid Balance**
 - Proteins attract fluid
- **Acid-base balance**
 - Buffers
- **Intracellular signaling**
 - Plasma membrane receptor
- **Energy**
 - Accounts for about 5-10% of daily calories)
- Basic structure of amino acid
 - Each amino acid has:
 - Central Carbon
 - Amino Group (NH₂)
 - Carboxy (acid) group (COOH)
 - Side Chain (R group)
 - Makes amino acid unique
- Basic structure of proteins (primary, secondary, tertiary, quaternary)
 - Primary
 - Secondary
 - alpha-helix
 - Beta conformation or Beta pleated sheet
 - Random coil
 - Tertiary
 - Hydrophobic and Hydrophilic interactions
 - Quaternary

- Interactions between 2 or more polypeptide chains determine quaternary structure
- 3 ways of classifying amino acids
 - Net Electrical Charge
 - 2 amino acids = negative charge
 - 3 amino acids = positive charge
 - 15 amino acids = no net charge (neutral)
 - Polarity (tendency to interact with H₂O)
 - Determined by side chain ®
 - 10 are polar and 10 are nonpolar
 - Polar amino acids are generally found on the surfaces of proteins
 - Essentiality
 - There are 9 essential (indispensable) amino acids
 - Some AA can become essential under certain physiological conditions
 - ex.) cysteine in premature babies
- Digestion and absorption of proteins
 - Digestion
 - Mouth/Esophagus = none
 - Stomach = HCl denatures proteins
 - HCl activates pepsin from pepsinogen
 - Enzyme (pepsin) breaks peptide bonds to form polypeptides
 - End Product = mostly large polypeptides
 - Small Intestine
 - Pancreatic Enzymes
 - Trypsinogen = trypsin
 - Chymotrypsinogen = chymotrypsin
 - Procarboxypeptidases A/B = carboxypeptidases
 - Several other peptides
 - Brush Border Peptidases
 - Aminopeptidases (digest: oligopeptides)
 - Dipeptidylaminopeptidases (digest: dipeptides)
 - Tripeptidases (digest tripeptides)
 - Final products of protein digestion:
 - Dipeptides
 - Tripeptides
 - Free Amino Acids
 - Absorption:
 - Most amino acids are absorbed in the duodenum and upper jejunum and some in the ileum
 - Amino acids can compete for the same carrier system
 - Some amino acids are used by intestinal cells
 - Ex.) glutamine is used by intestinal cells for energy and to stimulate cell proliferation
 - Amino acids enter portal vein to the liver

- Protein needs/recommendations
 - Adult RDA = 0.8 grams protein/kg body weight
 - Common recommendations for athletes: 1.2-1.8 g/kg
 - Acceptable Macronutrient Distribution Range = 10-35% of total cal
 - Protein requirements determined by nitrogen balance studies
 - Amount of N in = Amount of N out
- Nitrogen balance (what is it? What would cause positive and negative nitrogen balance?
 - Sources:
 - Dietary protein (proteins contain 16% nitrogen)
 - Nitrogen losses: urine, feces, and skin (skin it's hard to measure)
 - Nitrogen status = (protein intake g/6.25) - (urinary nitrogen + 2)
 - Positive Nitrogen Balance: More N in
 - Ex.) infants, children, pregnant women, athletes
 - Negative Nitrogen Balance: More N out
 - Ex.) Starvation, Serious Injury, Illness, Physical Stressor
- Sources of protein
 - Exogenous sources (food)
 - Animal products
 - Plant products: grains/grain products, legumes, vegetables, nuts
 - Endogenous proteins (turnover of proteins in the body)
- Protein quality (based on digestibility and amino acid profile)
 - The measure of a protein's digestibility and how its amino acid pattern compares with your body needs
 - Influenced by
 - Digestibility
 - Proteins amino acid profile
 - Animal proteins are more easily digested and absorbed
 - Animal proteins: 90-99% digested
 - Plant proteins: 70-90% digested
- Sources of high-quality and low-quality proteins
 - High-Quality Proteins/Complete proteins
 - Supply all essential amino acids in the approximate amounts needed by humans
 - Sources: Milk, Yogurt, Cheese, Eggs, Meat, Fish, Poultry, and Soy Protein and Quinoa
 - Low-Quality Proteins (incomplete proteins)
 - Low in at least one essential amino acid
 - Most plant proteins
- What is mutual supplementation?
 - It's the incomplete protein foods can be ingested together so that amino acids become complementary
 - 2 incomplete proteins together can complement one another in digestion
- Introduction to amino acid metabolism
 - Sources of Amino Acids

- Diet
 - Turnover of proteins in the body (Nitrogen balance)
- Liver monitors absorbed amino acids and adjusts the rate of metabolism
 - For the catabolism of proteins/amino acids
 - For the anabolism of proteins
- The potential fate of an amino acid
 - Amino acids can be used
 - To build proteins
 - Convert to other AA or small nitrogen-containing molecules
 - Stripped of their nitrogen, amino acids can:
 - Can be used as energy
 - Converted to glucose, fat, CHOL, ketone, bodies
- How is the amine group (nitrogen) removed from amino acids? (transamination & deamination)
 - Transamination or Deamination of amino acids
 - Deamination = removal of amino group
 - Take amino acid → remove N group → makes ammonia = keto acid
 - Transamination = transfer of amino group from one amino acid to an amino acid skeleton (aka alpha-keto acid)
 - Keto acid A + Amino acid B → Amino Acid A + Keto Acid B
 - transfer the N from the keto acid to amino acid
 - Catalyzed by aminotransferases
- Amino acid metabolism (How the body uses amino acids? To make proteins, other amino acids, small nitrogen-containing molecules, produce energy, make glucose and fat)
 - **Amino acids used to make proteins**
 - The liver makes hundreds of different plasma proteins
 - Albumin
 - Major protein transporter
 - Protein status = malnourished/deficient
 - Check albumin levels
 - Used as an indicator of visceral (organ) protein status
 - Acute-phase proteins (inflammation/infection)
 - C-reactive protein = evaluates inflammation in patients
 - **Amino Acids are used to make other amino acids**
 - Essential amino acids can be converted to nonessential amino acids
 - Ex.) Phenylalanine to tyrosine
 - Amino Acids are used to make small nitrogen-containing molecules
 - Glutathione = major antioxidant
 - Carnitine = transporter of long-chain fatty acids into mitochondria to use for energy
 - Creatine = part of phosphocreatine found in muscle use for quick energy
 - Carnosine = antioxidant (muscle/brain)

- Choline = is a part of acetyl choline (neurotransmitter) and some phospholipids (lysothine)
- Purine and Pyrimidine Bases, which are needed to make DNA (deoxyribonucleic acid) and RNA (ribonucleic acid)
 - Synthesized in the liver
 - Nucleic acids are made of
 - A 5-Carbon Sugar
 - A Phosphoric Acid
 - Nitrogenous Bases (e.g. purines and pyrimidines)
- Amino Acids used for energy
 - Glucogenic amino acids are converted to pyruvate → glucose
 - Ketogenic amino acids are converted to acetyl CoA → ketones
- Some amino acids can be converted to glucose
 - Glucogenic amino acids are converted to pyruvate
- Amino Acids can be converted to fat
 - Both glucogenic and ketogenic amino acids can be converted to fatty acids
 - Excess anything can be converted to fat
 - Can contribute to weight gain
- What is an alpha-keto acid?
 - It is what's left when the amino group is removed
- Summary of non-nitrogen uses of amino acids
 - Once the amino group is removed, the C skeleton (alpha-keto acid) can be used to produce:
 - Calories/energy
 - Most can be converted to glucose (gluconeogenesis)
 - Ketone bodies
 - CHOL
 - Fatty acids
- Disposal of nitrogen waste
 - The use of amino acids for energy also produces carbon dioxide and ammonia
 - Ammonia is highly toxic and is converted to urea in the liver
 - The kidneys filter urea from the blood
 - Urine nitrogen
 - Mostly urea
 - Some Uric Acid (from breakdown of nucleic acid) (DNA/RNA)
 - Creatinine
 - Ammonia
- Metabolism of amino acids in the muscles (major site of BCAA metabolism, how do muscles get rid of nitrogen waste, what do creatinine and 3-methylhistidine measure?)
 - 40% of body's protein is found in muscles
 - Main site for metabolism (degradation) of branched chain amino acids
 - Since muscles do not make urea, nitrogen (waste) is used to make glutamine and alanine (nonessential amino acids) and they are transported to the liver

- Liver makes urea
 - Muscles do give off N waste = ammonia
 - Muscles can't make urea so they need to get transported to the liver
 - **Indicator of muscle mass**
 - Urinary creatinine (degradation product of creatine)
 - Not always accurate
 - Creatinine helps regenerate ATP found in muscles
 - Indicator of muscle catabolism (degradation)
 - Urinary 3-methylhistidine (by-product of normal turnover of muscle proteins)
 - Malnourished people make more
- Metabolism of amino acids in kidneys (perform gluconeogenesis and rid the body of nitrogen waste, what are the major nitrogenous waste molecules?)
 - The kidneys preferentially take up a number of amino acids from the blood and metabolize them
 - Ex.) the kidneys are the major site for the production of arginine, histidine, serine, and possibly tyrosine
 - The kidneys perform **gluconeogenesis**
 - The kidneys are responsible for ridding the body of nitrogenous waste
- Kwashiorkor vs Marasmus (know their differences)
 - Protein-energy Malnutrition
 - Inadequate calories and/or protein
 - Most widespread form of malnutrition in the world
 - More common in children
 - 33,000 children die each day from malnourishment
 - 2 Types
 - **Marasmus**
 - Severe deficiency of calories
 - Insufficient protein
 - Signs
 - Extremely thin
 - Lack of Growth (stunt, waste, etc)
 - Loss of fat stores
 - Mostly kids 6-18 months
 - Diarrhea can lead to death
 - Severe dehydration
 - Too weak to recover
 - Severe energy deficiency
 - Lowers insulin
 - Raises glucagon
 - Chronic protein deficiency
 - Net effect:
 - Raises fat metabolism from adipose cells; break down

- Raises Ketone bodies (brain can decrease)
- Decreases Protein Synthesis
- Raises AA mobilization from muscles (breakdown)
- **Kwashiorkor**
 - Severe deficiency of dietary proteins
 - Signs
 - Edema (swelling in abdomen)
 - Muscle loss
 - Skin rash/hair changes
 - Water and Electrolyte Imbalance
 - Typically occurs in older infants (1-3 y/o)
 - Eating carbs, so raises insulin
 - Muscles: decrease protein breakdown
 - Liver: Decreases release of plasma proteins
 - Liver: Decreases osmotic pressure
 - Water leaves blood vessel → edema
 - Bloated belly
- Why/how does abdominal edema occur with Kwashiorkor?
 - Liver decreased release of plasma proteins (e.g. albumin) → osmotic pressure → outside the blood vessels → edema bloated belly.

Carbohydrates

- What are glycosidic bonds? What are the most common types of a bond (Alpha 1,4) and what does the Alpha 1, 4 mean?
 - Glycosidic bonds: the bond between two sugars/carbs at the 1st Carbon of 1 sugar and 4th carbon on another.
 - OH group of one monosaccharide and the OH group of another monosaccharide
- What are the monosaccharides and disaccharides? What sugars are in disaccharides? Common Name? Food Source?
 - Simple Sugars
 - Monosaccharides and Disaccharides
 - Glucose
 - Fructose
 - Galactose: milk sugar
 - Glucose + Fructose = Sucrose: table sugar
 - Glucose + Galactose = Lactose: milk sugar
 - Glucose + Glucose = Maltose: malt in beer
 - Sweetness Levels of Sugars:

- Sucrose the Sweetest at 100
 - Maltose 46
 - Lactose at 35
 - Galactose at 32
- Trends of sugar availability in the U.S.
 - In 2017, 126.6 lbs per person of caloric sweeteners were consumed which is down from 151.5 in 1999.
- What are Oligosaccharides? Common Food Sources?
We lack the enzymes to digest these.

Oligosaccharides (3-10 sugars) Found in beans, peas, grains.

- Raffinose
- Stachyose
- Verbascose

Humans can't digest so bacteria throw a fermentation party = gas

- Polysaccharides: More than 10 monosaccharides (starch, glycogen, cellulose)
 - Starch and 2 forms: Stored Carb/sugar in plants. Amylose (unbranched) + Amylopectin (branched)
 - Glycogen and Where is it Found?: Glycogen is the stored form of carb/sugar in animals. Found in the liver and muscles.
 - Fiber: Supporting sugar of plants, can't be digested by humans, insoluble and soluble. ex.) cellulose
- Sugar Alcohol (Calorie, Ex. Details about Glycerol, Sorbitol, and Mannitol):
 - Mono- and Disaccharides
 - Less sweet than table sugar (sucrose)
 - Similar Caloric value as sucrose but absorbed slower
 - Sorbitol and Mannitol are incompletely absorbed which leads to a laxative effect.

SECTION 2: Digestion

- Digestion of Carbs (Where does it occur, What are the enzymes involved; where did the enzymes come from? What are the enzymes digesting?):
 - Starts in the mouth with salivary amylase, and hydrolysis
 - Digested in the small intestine with pancreatic enzymes [pancreatic A(1-4)] and Dextrinase. Digests starch into oligosaccharides (dextrans) and maltose.
 - Brush border disaccharidases digest disaccharides
- The process of breaking Glycosidic bonds is a hydrolysis reaction.
 - Disaccharides are hydrolyzed and broken into monosaccharides
- Mechanisms of Carbohydrate absorption:

- Absorptive capacity in humans is 5,400 g/day of glucose and 4,800 g of fructose.
 - Monosaccharides are absorbed into enterocytes
 - Active transport: requires energy and an SGLT1 carrier (glucose + galactose)
 - Facilitated diffusion: concentration gradient (fructose, some glucose, galactose)
 - Simple diffusion: sugar alcohols
- Transportation of Carbs (Where do they go after absorption, what happens to galactose and fructose?):
 - All sugars are destined to enter the blood and then to the liver (via the portal vein)
 - Galactose and Fructose are converted to glucose in the liver
 - Glucose enters systemic blood circulation
- Glucose transporters: what are they and know the importance of GLUT4: Glucose cannot pass through the cell membrane just by simple diffusion. 14 different transporters used, but GLUT4 is the only one that requires insulin. HEART, MUSCLE, ADIPOCYTES
- Fate of Glucose (4 Endpoints):
 - Converted to Energy: GLYCOLYSIS
 - Anaerobic: 2-3 ATPs per glucose molecule
 - Aerobic: 36 - 38 ATPs per glucose molecule
 - Stored as Glycogen: Liver and Muscles. GLYCOGENESIS
 - Made into Fat: in Liver: Glucose to Fat LIPOGENESIS
 - Goes into the Pentose Phosphate Pathway
 - produces NADPH and ribose used to make DNA and RNA
- Carb Metabolism Pathways (Beginning and Ending Substrate and know if there are any significant products made, like ATP or NADH/FADH2, # of carbons in glucose, pyruvate, lactate, acetyl CoA.)
 - Glycogenesis: Glycogen from glucose: muscle and liver. Create Glycogen
 - Glycogenolysis: Glucose from Glycogen, breaking down of glycogen. Liver shares its glycogen and muscles do not
 - Glycolysis: Oxidation of glucose to produce: 2 pyruvates, 2 ATP (3 if it was from glycogen), and 2 NADH (1 NADH = 3 ATPS) (1 FADH = 2 ATPS)
 - Pyruvate to lactate: Lactate (no O₂) Acetyl CoA (with O₂)
 - Pyruvate to acetyl-CoA: This must happen before the Krebs Cycle can; produces 1 NADH.
 - What happens to pyruvate? (Depends if Aerobic or Anaerobic Environment):
 - Anaerobic = lactate/lactic acid
 - Aerobic = Acetyl CoA

- Krebs Cycle: Starts w/ Acetyl CoA ends with oxaloacetate. 3 NADH, 1 FADH, and 1 GTP. (**REMEMBER KREBS CYCLE HAPPENS 2x**)
- Pentose Phosphate Pathway: aka Hexose Monophosphate Shunt; produce **NADPH which is required for the synthesis of fatty acids and ribose-5-P.**
- **Gluconeogenesis:** Formation of glucose from non-carbohydrate sources (molecules with at least 3 Carbons) so:
 - (glucogenic amino acids, lactate, glycerol or triglycerides, and pyruvate)
 - Occurs mostly in the liver
- **Lipogenesis:** storing fat from excess carbs. **Acetyl CoA used to make fatty acids**
- ATPs produced from glucose in the aerobic and anaerobic environment: **2 or 3 ATP in anaerobic. 36-38 in an aerobic environment**
- **Insulin:** Hormone secreted from where? When is it elevated? Insulin Actions?
 - Insulin secreted from the pancreas beta cells, elevated with an increase of plasma glucose
 - Increases the expression of enzymes to increase the synthesis of glycogen, lipids, and proteins.
 - + **Glucose uptake by most cells**
 - + **Glycogenesis**
 - + **Glycolysis**
 - **Glycogenolysis**
 - **Glycogenogenesis**
- Insulin Antagonists: When are they elevated? What are their actions?
 - Glucagon: released by the pancreas
 - Epinephrine: released from the adrenal medulla
 - Cortisol: released from the adrenal cortex
 - + **Glycogenolysis**
 - + **Gluconeogenesis**
 - **Glucose uptake by cells**
- High Fructose Corn Syrup: Background/History, Advantages, Research regarding health effects
 - Really got a bad rap for no reason
 - No direct link to obesity and diabetes, not inherently worse than other sugars.
- Sugar and Risk of Dental Caries:
 - Mouth bacteria love sugar, sticky sugar sticks around.
- Diabetes: 2 types, warning signs, and blood glucose interpretations, potential complications
 - Type 1: don't produce insulin
 - Type 2: Cells do not respond to insulin well (decreased effect)

- Warning Signs:
 - **Hyperglycemia:**
 - **Eye:** Retinopathy, Cataract, Glaucoma: Blind
 - **Kidney:** Nephropathy, Microalbuminuria, Gross Album: Kidney Failure
 - **Nerves:** Neuropathy: Peripheral, Autonomic: Amputation
 - **Thirst** (polydipsia)
 - **Frequent Urination** (polyuria)
 - **Excessive eating** (polyphagia)
 - **Blurred Vision**
 - **Infections**
 - **Weight Loss** (type 1)
 - **Fatigue**
 - **Poor wound healing**
- Lactose Intolerance (lactase issue, symptoms, treatment)
 - Deficiency of lactase
 - Effect many as they age
 - Children of nonwhite races
 - Most often inherited
 - Symptoms:
 - Nausea
 - Cramps
 - Bloating
 - Diarrhea
 - Gas
 - Tips/Treatment
 - Small amounts through the day instead of all at once
 - Yogurt or Cheeses
 - Oral Lactose Digesting Enzyme